Chemical Force Microscopy Research at the National Institute of Standards and Technology

Michael J. Fasolka & Alamgir Karim

Polymers Division

Materials Science and Engineering Lab

Tinh Nguyen, Mark VanLandingham & Xiaohong Gu

Materials And Construction Research Division Building and Fire Research Lab

Kimberly A. Briggman & Jeeseong Hwang

Optical Technology Division Physics Laboratory

Chemical Force Microscopy (CFM)

C.D. Frisbie, L.F. Rozsnyai, A Noy, M.S. Wrighton, C.M. Lieber, 1994, *Science* 265:2071 A. Noy, D.V. Vezenov, and C.M. Lieber, *Annu. Rev. Mater. Sci*, 1997, 27:381

Au coated AFM
Probe, treated with
thiol SAM

Chemically Functionalized AFM probe with increased sensitivity to chemical differences:

- Tapping-Mode Phase imaging
- Friction Force Contact imaging

The promise of CFM:

nm scale chemical imaging of complex specimen surfaces

- Multiphase Polymers
- Biological Samples

Barriers to a Better CFM:

Moving CFM beyond the demonstration stage:

- Characterization of probe functionalization
 - Quality and Reliability of SAM
- Relation of CFM contrast to traditional chemical analysis
- Lack of Challenging Model Specimens

The NIST CFM Project:

Funded by the NIST Advanced Technology Program

Highly Designed Reference Specimens

Polymers Division, MSEL

- Soft Lithography
- Self Assembly
- Gradient Approach

CFM

Probe Characterization

Optical Technology Division, PL

- Advanced Spectroscopy
 - Sum frequency generation
- Fluorescence Imaging
- Traditional and CNT probes

Contrast Enhancement Strategies

Mat. & Bldg. Res. Div, BFRL

- Traditional and CNT Probe functionalization
- Humidity enhanced CFM contrast

Gradient Reference Specimen for CFM

Fasolka, Karim - Polymers Division, MSEL

Calibration area

μm scale pattern with decreasing contrast for CFM

Calibration area

- Hydrophobic and Hydrophilic domains
- Illuminates chemical sensitivity (min. contrast)
- Relates contrast to traditional measurements (calibration) e.g. FTIR, contact angle
- "Gradually challenges" CFM technique

Fabrication of Reference Specimen

μ-contact print thiol SAMs on Au substrate

Fabrication of Reference Specimen

Application of UV-ozone exposure gradient

Gradient Reference Specimen Demonstration

Contact-Mode Friction AFM Images

Scale bars are 10µm Images have equal z-scales

Print: CH₃ Terminated SAM

Fill: COOH Terminated SAM

Linear Exposure Ramp: 0 - 60s

Reference Specimen Characterization/Calibration

2.5x10⁻³

1.5 1.0

3050

3000

3000

2950

CH₂

2950

2900

Vibrational Frequency / cm⁻¹ CH₂

2900

Vibrational Frequency / cm

CH₃

Absorbance

Absorbance

Water Contact Angle Measurements

CH₂

2850

CH₂

2850

2800

2800

2750

2750

1300

1300

Relative Humidity (RH) Enhanced CFM Contrast

T. Nguyen, X. Gu, M. VanLandingham - BFRL

Friction CFM for three probe types -COOH Print, -CH₃ Fill, 18µm pitch

CFM Probe Characterization

K.A. Briggman, J. Hwang – Physics Lab

Gauging the quality of probe functionalization

Ultrasharp tip arrays

Silicon-MDT Ltd. www.siliconmdt.com

CVD-grown CNT Brush

Prof. Eric A. GrulkeUniversity of Kentucky

Fluorescence imaging of tip functionalization

Surface-Sensitive IR Spectroscopies

- Reflection-absorption IR Spectroscopy
- Sum Frequency Generation Spectroscopy

Future Directions

- Increasingly complex reference specimens
 - Chemical and Topographic Patterning
 - Block Copolymer Fracture Surfaces
- Refinement of RH-contrast enhancement
 - Stability improved, Mechanism Explored
- Further Development of Probe Characterization Methods
 - Probe-like array surfaces
 - Spectroscopic and Imaging Techniques

Acknowledgements

This research is funded by the NIST Advanced Technology Program

This work incorporates processes and devices developed by the NIST Combinatorial Methods Center (www.nist.gov/combi)

Contact: mfasolka@nist.gov

